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Direccion de Llegada (DOA) con DL

Introduccion

 (Colocamos una serie de antenas a una
cierta distancia aleatoria.

« Llegan varias senales en distintas
direcciones.

« En unos tiempos determinados, tomamos
una muestra del campo.

« Objetivo: averiguar cuales son las
direcciones de llegada
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Direccion de Llegada (DOA) con DL

Planteamiento del problema
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¢Como obtenemos de vuelta las sefales iniciales? Solo
disponemos de unas capturas tomadas de unas antenas a

cierta distancia, no una funcion continua...
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Direccion de Llegada (DOA)

Solucion propuesta: Redes Convolucionales

« Aunqgue existen algoritmos clasicos

(por ejemplo, MUSIC), pero no
funcionan tan bien con antenas
separadas arbitrariamente.

Nuestro problema tiene dos
dimensiones, al igual que una
imagen: una son los radares, la otra
los instantes de tiempo.

Se han utilizado redes
convolucionales, que habitualmente
utilizan imagenes para clasificar o
extraer informacion de imagenes.

*Convolution arithmetic - Padding strides, por Vincent Dumoulin, Francesco Visin, Wikimedia Commons
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Direccion de Llegada (DOA) con DL

Resultados

« La direccion de llegada es mas facil .
de predecir cuando la incidencia es 6 1 .
normal. °
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Direccion de Llegada (DOA) con DL

Resultados

« Se puede aumentar considerablemente el
numero de senales a predecir con un error
razonable.

« &Y si anadimos ruido? Cuando la amplitud
del ruido es igual de fuerte que la senal que
nos llega (SNR = 0), podemos predecir hasta
6 senales con un error medio de 20°.

Average error (degrees)

1 2 3 4 5 6
Number of signals
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Direccion de Llegada (DOA) con DL

Conclusion
Conclusiones

o Para un array lineal de antenas, es decir, colocadas en una linea a distancia arbitraria.
o Tienen mayor dificultad para direcciones de incidencia oblicuas.

o Buenos resultados en casos donde el ruido es mas fuerte que la senal.

Trabajo futuro

o Extrapolar el problema a antenas con otros tipos de disposiciones

o Utilizar algoritmos de IA generativa para producir el problema inverso.

Plan de Recuperacion,
Eﬂl?:&;?&gggmmﬁ?y DIGITAL Transformacién
W v Resiliencia

1A3 £28 Universidad | ) dra

Ca ted de Itlge c.aAmﬁ al :::. N de Alcala

eeeeeeeeeeeeeeeeeee




Indice
» Prediccion de la Direccion de Llegada en entornos con ruido

mediante Deep Learning (DOA).

- Clasificacion de aeronaves mediante redes neuronales
convolucionales (CNN) sobre datos RCS e imagenes ISAR.

IA3 . B yes indra

aaaaaaaaaaaaaaaaaaaaaaaaaaaa
en Aerondutica y Aeroespacio



Clasificacion de Aeronaves mediante CNN

Definiciones

Radar Cross Section (RCS)

Una medida de la radiacion reflejada p
objetivo al incidir sobre él un frente de on

or un
da radar

Inverse Synthetic Aperture Radar (ISAR)

Una representacion bidimensional de la RCS haciendo
uso de transformadas de fourier
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Clasificacion de Aeronaves mediante CNN

Introduccion

- El objetivo: A partir de una RCS / ISAR devolver la geometria a la que corresponde dicha sefal.
1. Se obtiene una RCS de la geometria a reconocer a través de un radar (terrestre o embarcado).
2. Se preprocesa dicha sefal para darle el formato adecuado.

3. Se envia la sefal al modelo entrenado (red neuronal) que devuelve la geometria a la que corresponde.
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Clasificacion de Aeronaves mediante CNN

Introduccion

¢Como se llega a un modelo capaz de distinguir aeronaves?
- Una red neuronal se entrena con datos
- La clave reside en tener datos abundantes y de calidad (lo mas realistas posibles)

- Los datasets de RCS de aeronaves no abundan

- Solucion: Generar nuestros propios datos
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Clasificacion de Aeronaves mediante CNN

Generacion de datos

Las RCS empleadas en el entrenamiento de la red se generan a través de GEMIS.

(GEMIS es una herramienta de software desarrollada por nuestro grupo que gestiona los grandes volimenes de datos necesarios para el calculo de la RCS)
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Clasificacion de Aeronaves mediante CNN

Generacion de datos

= Para acercar estos datos a los que recibe un
radar real se les ahade ruido. La cantidad
de ruido que se anade se regula a través de ‘
la relacién sefal-ruido (SNR), que se
establece como parametro de entrada.

= Para entrenar modelos especializados, se -
anade la capacidad de restringir la zona ‘ l | \:;J:%
desde la que se incide con el radar a la — ’ de el -
geometria. | : j N
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Clasificacion de Aeronaves mediante CNN

Resultados

25 cazas de combate (500 muestras por geometria):

\ . AN\ \ RCS | ISAR
\k\\ ;\ p 95.17% | 99.17%
8 geometrias pequefias (UAVs y drones) :
~ { - RCS ISAR
=
\ ~N ‘} 96.91% | 99.13%
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Clasificacion de Aeronaves mediante CNN

Conclusion

e Los modelos funcionan:

o Para grandes grupos de geometrias, independientemente de su tamano
o Cuando se aplican restricciones a las direcciones de incidencia (modelos especializados)
o Aunque se anada una cantidad de ruido significativa

 Trabajo futuro:

o Aproximar aun mas la RCS a la que mediria un radar real
o Trabajar con geometrias con movimientos "menos colaborativos"
o Incluir la dimension temporal en nuestro datasets (RNN)
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