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Introduccion

FSSCat/®-sat-1

Demonstrating the potential of AI for Earth observation

« Ahorro de ancho de
banda en el down-
link a Tierra

esa

®-sat-1 technology
processes data on board

« Incremento de la
capacidad de
ek procesamiento a
bordo

®-sat-1 is a new artificial intelligence
experiment carried on the Federated ~ Returning only
Satellite Systems (FSSCat) mission - usable data to Earth

Modelos simples

#FSSCat  #Phisatl

« Menor latencia o uso
de recursos frente a
algoritmos clasicos

« Impredecibilidad
ante nuevos
escenarios

» Riesgo
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Introduccion

Research paper

End-to-end deep learning pipeline for on- Few-shot satellite image classification for
board extraterrestrial rock segmentation bringing deep learning on board OPS-SAT
Daniel Mcrekqb.]clkub Nalepa © b2 Ramez Shendy & Jokub NuLepD

Robust Machine Learning Systems For Dependable Space Applications

Publisher: IEEE | Cite This

Nikolaos Panagiotopoulos ; Toni Lubiniecki; Alen Turnwald ; Niklas Baldauf All Authors

Edge computing in space: Design of an FPGA ) _

architecture for thermal anomaly detection Informational and extreme machine

based hine 1 . h learning for onboard recognition system
ased on a machine learning approac of ground objects

Carmen Misa Moreira & &, Carl Shneider &, Andreas M. Hein = Publisher: IEEE

Cite This

Olena Protsenko ; Taras Savchenko; Mykyta Myronenko ;

All Authors
Qleksandr Prikhodchenko
In-Orbit Artificial Intelligence and Machine Learning On-Board Processing Solutions
for Space Applications : Edge-Based and Versal Space Reference Designs : First
Design-In Experiences
Rajan Bedi All Authors
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Objetivos

1. Diseno de modelos de Machine Learning
eficientes para la resolucion de tareas

especificas a bordo. B
3. Implementacion

eficiente e inferencia en
FPGA para procesamiento
on the edge.

2. Entrenamiento de los algoritmos en
software (Matlab, Python, Pytorch)
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Proyectos

A3
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- Beamforming Digital (DBF). Comparativa entre algoritmo
tradicional (MVDR) y FFNN en FPGA.

- Spiking Neural Networks (SNN):

« Clustering no supervisado. Modelo SNN-SOM en FPGA

- Clasificacion de imagenes. Modelo hibrido CNN-SNN

Plan de Recuperacion,
Transformacion
W\ v Resiliencia

% vesidad IV QI



DBF mediante FFNN en FPGA

- Entrada: primera fila de la matriz de correlacion Red entrenada con datos

- Salida: coeficientes de beamforming sintéticos. Targets de
entrenamiento calculados

............................. e Con algorltmo MVDR
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Resultados DBF FFNN

Tuble 22: Comparison Summary Between MYDR and FFNN (16 Anlennas)

Metric MVDR FFNN Note / Improvement
Average SNR difference | 0 dB (ref) —0.187 dB Minor degradation
Total latency 27.22 ps 9.47 ps 65% reduction
BEAM PATTERN RESPONSE .
T — T 1 ] Power consumption 1.75W 0.95 W 45% lower
"""" R | DSP usage 3780 1728 >2x more efficient
| : | CLB LUTs 429,520 143,053 67% reduction
"l | | Total multiplications 1938 928 52% fewer ops
a0 | } Offline training time N/A 24h (A100 GPU) 5x10°% samples
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Clustering con SNN

« Aprendizaje no supervisado

« STDP (Spike-timing dependent plasticity) para modificar los pesos internos
- Clustering topoldgico: entradas parecidas activan neuronas cercanas (SOM)
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Clustering con S

) . Confusion Matrix
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Clasificacion de imagenes con SNN

Distincion entre clases “"Bosque” y “No bosque” en imagenes satelitales
Red hibrida CNN-SNN

Aprendizaje supervisado (backpropagation) con modelo CNN-FFNN vy
traslacion de pesos a modelo hibrido para la inferencia

Imagen de entrada
28 x 28 x 3 (RGB)

Capa 1: Conv2D

" "

No bosque 3fltros5x5 |
Stride 1, ReLU

Salida: 24 x 24 x 3

Capa 2: MaxPooling
2 x 2, Stride 2
Salida: 12 x 12 x 3

"Bosque”

Capa 3: Conv2D

Entrada/Salida de la red neuronal

5 filtros 5 x 5
Stride 1 |

Hard Sigmoid - Simplificada

2 x 2, Stride

Capa 4: MaxPooling

Salida: 4 x4 x5

Salida por capa
9 Capas comunes a ambos modelos
Capas del modelo tradicional CNN
Capas del modelo hibrido CNN-SNN

Salida: 8 x 8 x 5

Capa 5: Flattening
Salida: vector de 80 valores

Capa 7: Dense layer
Softmax

Capa 6: Dense layer
ReLU

Capa 6: Spike  |—{ Capa 7: Spike  |—
LIF LIF

Salida: n* neuronas

Salida: 10 nenronas
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*n es el niimero de clases

Salida, clase predicha:
Bosque/No bosque
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Clasificacion de imagenes con SNN

Matriz de Confusién: Clasificador CNN-FC

Bosque

Clase Real

No bosque 4

Bosque

No bosque
Clase Predicha
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Matriz de Confusidon: Clasificador CNN-SNN
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Clase Predicha
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Lineas futuras

ht

/G(\ (+) B )
% « Beamforming Digital mediante LSTM
hei C o /—» ht

- Implementacion en tarjeta
Versal

Plan de Recuperacion,
iy NISFNb;mS?FDlGlTAL Transformacién
W\ v Resiliencia

Financiado por
) la Unién Europea
NextGenerationEU

12 1A3 7 ueed InAra

Catedra de Inteligencia Artificial
en Aeronautica y Aeroespacio



Outcome

» Enhancing efficiency in spaceborn phased array systems: MVDR algorithm and FPGA integration, Digital Signal
Processing (publicado)

« FPGA-Based Adaptive Beamforming.: Comparing Mvdr and Neural Networks for Spaceborne Systems, Digital
Signal Processing (en revision)

« A New Highly Efficient and FPGA-Oriented STDP-Based Spiking Neural Network for Topological Clustering (en
desarrollo)

« Spiking Neural Networks for Earth Observation: A Hybrid Approach for Deforestation Detection (en desarrollo)

Eduardo. Ortega@uah.es
Ruben.marco@uah.es

P lopezgonzalez@uah.es

Aqgustin.martinez@uah.es
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iMuchas gracias!

Catedra de Inteligencia Artificial de Alcalé

en Aeronautica y Aeroespacio

g_% Uni idad EEF Financiado por Plan de Recuperacion,
s I n r a - [o—— PEATA T srooN DAL Transformacion
@ NextGenerationEU ‘ y Resiliencia



	Diapositiva 1: Cátedra IA3 – PT7
	Diapositiva 2: Introducción
	Diapositiva 3: Introducción
	Diapositiva 4: Objetivos
	Diapositiva 5: Proyectos
	Diapositiva 6: DBF mediante FFNN en FPGA
	Diapositiva 7: Resultados DBF FFNN
	Diapositiva 8: Clustering con SNN
	Diapositiva 9: Clustering con SNN
	Diapositiva 10: Clasificación de imágenes con SNN
	Diapositiva 11: Clasificación de imágenes con SNN
	Diapositiva 12: Líneas futuras
	Diapositiva 13: Outcome
	Diapositiva 14: ¡Muchas gracias!

